Discovered planets

Monday, July 20, 2009



Most extra-solar planets that have been discovered have been found by using Doppler technique. I've listed a table and a schematic diagram of the recently discovered planets around main sequence stars. I've also made a table with some data on Jupiter and Earth. These are planets who are the most likely to support life. As you can see most planets have small orbital values, and the mass is also quite big. Solid planets most have masses of ~15 Earthmasses, planets with higher mass are mostly of the gaseous type. This means the surface temperature would be way to high to support life, and the planets would all be of the gaseous type. None of them is likely to be solid and none of them is likely to be a candidate for a life sustaining planet.
There have also been planets found orbiting pulsars. A pulsars is a radio source that emits signals in very short, regular bursts; it's a highly magnetic, rotating star of extremely high density and small size that is composed mainly of very tightly neutrons (neutron star, mass no bigger than ~3 solar masses). We expect here more extreme conditions, and a habitable zone is not very likely. The object orbiting these pulsars are most Earth like masses and solid, but there have also Jupiter like masses been found; data can be found at Darwin Project and Extra-solar Planets Catalog.
Objects with mass > 13 Jupiter masses are commonly named Brown Dwarfs. This is a very low mass objects (~0.01-0.08 solar mass) of low temperature and luminosity that never becomes hot enough in its core to ignite thermonuclear reactions. So you can't really call them planets, they are some kind of stars that have failed to become a star. Several of these kind of object have also been found orbiting stars; data can be found at Darwin Project and Extra-solar Planets Catalog.
But why have only these kind of planets been found orbiting main sequence stars? The answer lies in the Doppler technique used to find these planets. These kind of planets are easiest to discern using this observation technique. To discover less massive planets in more high orbit you would need more high-precision Doppler observations, but that isn't conceivable yet. You could also use more precise observation techniques like micro-lensing, but micro-lensing events are more rare and there's only one chance to collect the data.
Let's make some assumptions for the quantities in the formula above to estimate the planets surface temperature.
The stars listed in the table are all of the F and G type. This means the temperatures of the stars ranges from ~5100 to ~7200 degrees Kelvin. Use this for Ts. The mean albedo A for earth is 0.39, that of Jupiter is 0.51. Use a value of the same size here also. The radius Rs of typeV G and F stars is about the same as the radius of the sun, 6.96 .10^5 km (range is about 1.3 Rsun (F0V) to 0.85 Rsun (G9V)). The value for a is given in the table below, the radius of the orbit. 1 AU = 1.496 .10^8km The estimated temperatures of the stars and the calculated temperatures of the planets are listed in table 1. One can see as the orbit becomes bigger the temperature drops. Some of the planets have high eccentricity's, this means that the temperature will vary a lot, because of the smaller and greater distance from the star. Since all planets are probably gaseous, you wouldn't expect life to evolve there.

table 1: Some data of planets around main sequence stars (data from Darwin Project and Extra-solar Planets Catalog) :
As you might notice, the mass is given in Jupiter mass·sin i, where i is the inclination of the planet's orbit. Because the orbital inclination cannot be retreived from the observations, the mass range could be quite big. For the temperature estimate is used: Albedo = 0.5, Rs = Rsun (~ 4.74 .10^-3 AU) then Tp = (0.041/a^1/2).Ts, a in AU

Which primary conditions are necessaryfor life as we know it?

0 comments: